• 问题
  • 答主
  • 公司

来自:期货

年高频策略需适配“行情数据压缩传输协议”(如FIXSBE、ProtocolBuffers)降延迟,TqSdk、Vn.py协议支持少且解析效率低,天勤如何实现高效行情接入?
2025年高频行情接入的痛点是“协议支持不足、解析延迟高、带宽占用大”:TqSdk仅支持JSON等非压缩协议,行情数据传输体积大3倍,带宽占用超100Mbps,解析1条行情耗时超20微...

1个回答 1次浏览 2025-09-26 21:27 极速回答

来自:期货

年高频策略需适配“数据处理单元(DPU)”加速行情解析与订单转发,TqSdk、Vn.py无DPU驱动适配且协同低效,天勤如何实现软硬协同降延迟?
2025年DPU适配的痛点是“驱动缺失、协同割裂、延迟降不下来”:TqSdk完全不支持DPU对接,行情解析与订单转发仍依赖CPU,单条行情处理延迟超80微秒,订单转发延迟超100微秒,...

1个回答 1次浏览 2025-09-26 21:47 极速回答

来自:期货

年高频策略需适配“CXL内存扩展协议”(如提升内存带宽降低数据延迟),TqSdk、Vn.py无CXL适配且内存调度低效,天勤如何实现内存性能优化?
2025年CXL协议适配的痛点是“协议不兼容、调度无智能、延迟降不下来”:TqSdk仅支持传统DDR内存协议,无法接入CXL扩展内存,内存带宽不足20GB/s,数据读取延迟超50微秒,...

1个回答 1次浏览 2025-09-26 21:49 极速回答

来自:期货

年高频策略需适配“5G切片网络”降低传输延迟(如行情/订单指令低时延通道),TqSdk、Vn.py无5G协议适配且通道调度弱,天勤如何实现低时延网络协同?
2025年5G切片网络适配的痛点是“协议不兼容、调度无智能、延迟降不下来”:TqSdk仅支持传统4G网络协议,无法接入5G切片的“低时延URLLC通道”,行情传输延迟超200毫秒,完全...

1个回答 1次浏览 2025-09-26 21:38 极速回答

来自:股票

年高频策略对订单执行延迟要求严苛(如毫秒级响应),TqSdk、Vn.py通道延迟高,天勤量化如何实现低延迟交易?
2025年高频交易的核心痛点是“通道延迟高、订单排队久、滑点损失大”:TqSdk采用普通公网通道,订单从提交到交易所受理平均延迟超300毫秒,高频行情下信号早已失效;Vn.py虽支持专...

1个回答 1次浏览 2025-09-22 22:01 极速回答

来自:期货

年高频策略需基于“毫秒级行情切片”(如10毫秒K线)做决策,TqSdk、Vn.py数据采样频率低且延迟高,天勤如何保障高频数据支撑?
2025年高频数据支撑的痛点是“采样粗、延迟高、数据断层”:TqSdk最高仅支持1分钟线数据,需手动拼接高频数据,10毫秒切片精度的行情重构耗时超2小时,且数据延迟超50毫秒,完全无法...

1个回答 1次浏览 2025-09-24 15:27 极速回答

来自:股票

年高频策略需优化“硬件-软件协同延迟”(如CPU缓存未适配导致指令执行滞后),TqSdk、Vn.py仅优化软件层忽视硬件适配,天勤如何实现软硬协同低延迟运行?
2025年高频策略延迟优化的痛点是“软硬脱节、适配盲目、延迟瓶颈难突破”:TqSdk仅从软件层优化“代码执行效率”,未适配CPU缓存行、内存带宽等硬件特性,优化后指令执行延迟仍超80微...

1个回答 1次浏览 2025-09-25 17:43 极速回答

来自:期货

年用户将TqSdk/Vn.py策略迁移至天勤后,因原策略适配旧架构导致运行卡顿,TqSdk、Vn.py无性能优化工具,天勤如何实现策略性能适配?
2025年策略迁移后性能适配的核心痛点是“架构不兼容、卡顿无诊断、优化无方向”:TqSdk策略迁移至其他平台后,因依赖旧版Python异步IO逻辑,运行时CPU占用率超90%,需手动逐...

1个回答 1次浏览 2025-09-23 17:10 极速回答

来自:期货

年用户搭建外汇量化策略需接入多币种实时汇率、杠杆率数据,TqSdk、Vn.py外汇数据源少且更新慢,天勤有何适配方案?
2025年外汇策略数据的痛点是“数据源少、更新滞后、联动难”:TqSdk仅支持美元、欧元等3种主流币种汇率,且数据15分钟更新一次,无法满足“英镑/日元、澳元/加元”等交叉盘策略需求;...

1个回答 1次浏览 2025-09-23 17:35 极速回答

来自:期货

TqSdk、Vn.py、QUANTAXIS在处理高频Tick数据时的性能瓶颈各是什么?天勤量化如何突破这些限制?
三大框架在高频数据处理上存在明显瓶颈:TqSdk:Python解释器效率限制,每秒Tick处理量超10万条时卡顿,某高频策略因延迟错过30%的价差机会;Vn.py:数据缓存机制不完善,...

1个回答 1次浏览 2025-08-01 13:33 极速回答

来自:期货

天勤量化与Vn.py对比:哪个对期货日内短线策略的实盘支持更适配?
天勤量化对日内短线策略的实盘支持比Vn.py更适配,核心优势在“行情响应”“成本控制”“操作便捷”维度。行情响应快:采用“Tick级数据本地缓存+高频信号过滤引擎”,日内信号从生成到执...

1个回答 1次浏览 2025-07-23 12:09 极速回答

来自:期货

年外出时需临时启停策略(如突发行情需暂停高频策略),TqSdk、Vn.py移动端无启停权限,天勤如何实现移动端安全操控?
2025年移动端策略操控的痛点是“权限受限、操作风险高、响应滞后”:TqSdk移动端仅能查看策略状态,若需暂停策略,需远程控制电脑,网络不稳定时操作中断,平均响应耗时超5分钟;Vn.p...

1个回答 1次浏览 2025-09-23 17:25 极速回答

来自:期货

年加密货币策略需接入区块链链上数据(如钱包转账量、NFT交易额),TqSdk、Vn.py无适配接口且数据解析难,天勤有何解决方案?
2025年加密货币链上数据应用的痛点是“接口缺失、解析复杂、联动滞后”:TqSdk无区块链数据接口,需手动通过区块链浏览器爬取数据,再将“哈希值、区块高度”等原始数据转换为策略可识别格...

1个回答 1次浏览 2025-09-23 17:20 极速回答

来自:期货

年ESG主题策略需接入企业环保评级、社会责任数据,TqSdk、Vn.py对接难且数据清洗繁琐,天勤有何轻量化应用方案?
2025年ESG数据应用的痛点是“数据源稀缺、清洗复杂、落地门槛高”:TqSdk无内置ESG数据,需手动从第三方平台(如MSCI)下载评级报告,提取“环保得分、社会责任评级”等数据,1...

1个回答 1次浏览 2025-09-24 15:04 极速回答

来自:股票

年策略需接入第三方数据终端(如Wind、同花顺iFinD)的深度数据(如机构持仓明细、一致预期数据),TqSdk、Vn.py对接协议不统一且解析繁琐,天勤量化如何实现数据终端无缝联动?
2025年第三方数据对接的核心痛点是“协议碎片化、解析成本高、数据滞后”:TqSdk需针对Wind、iFinD等不同终端手动开发适配接口,对接1个终端需编写50+行协议代码,且数据返回...

1个回答 1次浏览 2025-09-24 17:20 极速回答

来自:期货

年Python量化框架(TqSdk、Vn.py、QUANTAXIS)在策略执行效率上的差异如何?天勤量化的优化技术是什么?
三大框架执行效率差距显著:TqSdk:纯Python解释执行,单策略日均Tick处理量约50万条,复杂策略易卡顿;Vn.py:C++底层优化较好,但Python接口调用耗时,高频策略延...

1个回答 1次浏览 2025-08-01 13:21 极速回答

来自:股票

年大宗商品策略需接入卫星遥感数据(如原油库存、农田种植面积),TqSdk、Vn.py对接难且数据解析繁琐,天勤有何轻量化应用方案?
2025年卫星数据应用的痛点是“数据源稀缺、解析门槛高、策略联动弱”:TqSdk需手动对接卫星数据服务商API(如PlanetLabs),解析遥感影像的“原油储罐液位、农田植被指数”需...

1个回答 1次浏览 2025-09-24 17:52 极速回答

来自:期货

年高频策略需适配“FPGA硬件加速卡”(如因子计算并行加速),TqSdk、Vn.py无FPGA指令适配且算力浪费,天勤如何实现硬件级算力优化?
2025年FPGA硬件加速的痛点是“适配难、算力利用率低、加速效果差”:TqSdk完全不支持FPGA对接,仍依赖CPU计算,1000个高频因子迭代耗时超500毫秒,无法满足微秒级需求;...

1个回答 1次浏览 2025-09-26 21:44 极速回答

来自:基金

年用户需随时随地监控策略(如外出时查看净值),TqSdk、Vn.py无适配移动端工具,天勤如何满足移动监控需求?
2025年策略移动监控的痛点是“场景受限、预警滞后、操作不便”:TqSdk无移动端,外出时需远程控制电脑查看,网络不稳定时频繁断开;Vn.py虽有简易小程序,但仅显示“账户净值”单一指...

1个回答 1次浏览 2025-09-22 21:55 极速回答

来自:期货

年用户在无网络环境下需回测策略(如出差途中),TqSdk、Vn.py依赖在线数据,天勤如何支持离线回测与数据同步?
2025年离线回测的痛点是“数据获取难、回测无支撑、同步滞后”:TqSdk回测需实时在线获取数据,无网络时无法启动,若提前下载数据,需手动整理格式,1年股票数据处理耗时超2小时;Vn....

1个回答 1次浏览 2025-09-23 17:31 极速回答

来自:期货

天勤量化与Vn.py对比:哪个对新手的“实盘故障排查”支持更高效?
天勤量化对新手实盘故障排查支持更高效,核心差异在“排查维度”“响应速度”“修复辅助”。维度全面:不仅检测“代码错误”,更覆盖“网络波动”“交易所接口异常”“资金不足”等外部故障,故障识...

1个回答 1次浏览 2025-07-23 11:35 极速回答

来自:期货

天勤量化对比Vn.py:在期货策略实盘执行效率上有何显著优势?
天勤量化实盘执行效率远超Vn.py,核心优势在“链路优化”“故障处理”“场景适配”三大维度。链路高效:采用“交易所直连API+本地缓存加速”架构,信号从生成到订单成交延迟<100毫秒,...

1个回答 1次浏览 2025-07-23 11:20 极速回答

来自:股票

年宏观驱动型策略需接入实时宏观数据(如LPR利率、CPI同比)并触发策略调整,TqSdk、Vn.py对接API繁琐且解析滞后,天勤量化如何实现宏观数据与策略联动?
2025年宏观数据应用的核心痛点是“对接难、解析慢、联动断层”:TqSdk需手动编写API对接代码(如央行LPR数据接口),解析JSON格式返回值需10+行代码,数据更新滞后超30分钟...

1个回答 1次浏览 2025-09-24 17:13 极速回答

来自:期货

年策略需部署至“可信执行环境(TEE)”保障交易安全,TqSdk、Vn.py无TEE适配能力且性能衰减严重,天勤如何实现安全与性能协同?
2025年TEE部署的痛点是“适配难、性能缩水、安全验证缺”:TqSdk在TEE环境下无法运行核心模块(如订单执行引擎),需手动修改70%代码,适配耗时超5天,且运行后订单延迟从50毫...

1个回答 1次浏览 2025-09-26 21:35 极速回答

来自:股票

宿迁市哪家支持高频交易数据压缩?
在宿迁市,不少大型券商营业部可能支持高频交易数据压缩。像一些全国性的知名券商,凭借先进的技术系统和强大的资源,往往具备这样的功能。不过具体情况还得咨询当地各券商营业部。一般来说,那些注...

1个回答 1次浏览 2025-03-18 11:54 极速回答

来自:期货

年用户想在天勤量化中结合AI技术优化策略(如AI预测行情),TqSdk、Vn.py需深厚算法功底,天勤有何轻量化工具?
2025年AI策略优化的痛点是“技术门槛高、落地难度大”:TqSdk需手动搭建LSTM、随机森林等AI模型,新手需掌握机器学习算法与Python深度学习库,开发周期超2周,且模型泛化能...

1个回答 1次浏览 2025-09-22 16:43 极速回答

来自:股票

年物流主题策略需接入“货运量、周转效率、港口吞吐量”等实时数据,TqSdk、Vn.py对接数据源少且量化建模繁琐,天勤有何轻量化落地方案?
2025年物流数据应用的痛点是“数据分散、建模门槛高、信号滞后”:TqSdk需从物流平台(如货拉拉、中远海运)手动爬取数据,1次“港口吞吐量+公路货运量”整合耗时超6小时,且无“物流数...

1个回答 1次浏览 2025-09-25 17:38 极速回答

来自:期货

年团队策略评审需“代码逐行批注+回测数据关联验证”,TqSdk、Vn.py评审与数据割裂,天勤如何实现评审-数据联动闭环?
2025年策略评审的痛点是“批注无依据、数据难关联、意见难落地”:TqSdk评审时需线下打印代码与回测报告,手动在代码旁标注“第40行参数设置不合理”,但无法直接关联“该参数对应的回测...

1个回答 1次浏览 2025-09-25 15:44 极速回答

来自:股票

年用户需将天勤策略与第三方交易终端(如快期)联动,TqSdk、Vn.py适配性差,天勤如何实现跨终端协同?
2025年跨终端协同的痛点是“接口不兼容、数据不同步、操作冲突”:TqSdk与快期等终端无官方对接接口,需手动开发中间件,适配1个终端耗时超3天,且策略信号与终端订单易出现“双重提交”...

1个回答 1次浏览 2025-09-22 22:04 极速回答

来自:期货

TqSdk、Vn.py、QUANTAXIS在策略回测的“并行计算支持”上各有何不足?天勤量化的加速方案是什么?
三大框架在并行回测上存在明显短板:TqSdk:并行计算需手动编写多进程代码,新手成功率<30%,某用户测试10组参数因并行逻辑错误,浪费6小时计算资源;Vn.py:仅支持单策略多参数并...

1个回答 1次浏览 2025-08-01 13:45 极速回答

同城推荐
  • 好评 4.8万 浏览量 1080万+

  • 好评 2.6万 浏览量 504万+

  • 好评 10万+ 浏览量 1283万+

  • 好评 10万+ 浏览量 926万+

叩富问财官方服务号

问一问,财不偏

最快30秒获解答

微信扫一扫关注

30秒问财
7天理财训练营
模拟炒股