多人博弈和个体最大化问题进行了区分
发布时间:2021-2-2 10:33阅读:348
冯·诺依曼在《博弈论》中对多人博弈和个体最大化问题进行了区分,并指出了两者的主要差异。例如,研究一个典型的最大化问题:如何用周长1英里的篱笆围出最大的面积?对于这个问题,我们只需要利用代数或微积分知识便可给出答案。若缩小范围,只允许在三角形中做选择,那么等边三角形要比其他三角形更优。若只允许在四边形中做选择,那么正方形是最佳的答案。若在所有正多边形中做选择,那么边数越多越接近最优解。如果没有边数限制,用周长1英里的篱笆围出最大的面积,圆形无疑是最佳选择。
在多人博弈中,比如当两个理性头脑为了一个目标产生冲突的时候,最终的答案总是会同时依赖于两者的决定,所以这时的形势与个人最大化问题的形势便不再相同。两个人一起玩井字棋时,如果甲方先行,且行棋方式完全正确,那么乙方将永远无法击败他;同样,若乙方先行,且行棋方式完全正确,那么甲方也永远无法击败他。这种博弈的方式是随机的,它的解也是随机的。
如果两个人一起玩向圆桌上放硬币的游戏:双方轮流向桌子上放硬币,率先放不下硬币的人就算失败。在这个博弈中,若A是先行者,他便可以用这样的策略获胜,即首先将一枚硬币放在桌子的正中央,接着每当对方放下一枚硬币,就在与之对称的位置上放上一枚硬币,这样一来,他便永远不会输,谁后放谁就会输。这是一个完美的信息博弈,只要知道谁先谁后就能知道谁赢谁输。


温馨提示:投资有风险,选择需谨慎。
-
布局未来,赢在起点!中信证券2025年资产配置策略全解析
2025-08-04 11:55
-
3600元育儿补贴落地,生育友好型社会多久会来?(内含补贴领取方法)
2025-08-04 11:55
-
新手村必读:从入门到进阶十佳理财书单推荐!
2025-08-04 11:55