年AI大模型(如GPT-4o、文心一言4.0)赋能量化策略需实现“模型输出-策略信号”无缝转化,TqSdk、Vn.py对接繁琐且效果难验证,天勤量化如何实现大模型轻量化集成?
还有疑问,立即追问>

年 AI 大模型(如 GPT-4o、文心一言 4.0)赋能量化策略需实现 “模型输出 - 策略信号” 无缝转化,TqSdk、Vn.py 对接繁琐且效果难验证,天勤量化如何实现大模型轻量化集成?

叩富问财 浏览:181 人 分享分享

1个回答
咨询TA
首发回答

2025 年大模型量化应用的核心痛点是 “对接复杂、输出非结构化、效果无校验”:TqSdk 需手动编写大模型 API 调用代码,处理 “自然语言解读→量化信号” 转化(如 “政策利好” 转 “加仓 20%”),1 次集成耗时超 5 小时,且模型输出随机性高,信号稳定性不足;Vn.py 仅支持少数开源大模型对接,对 GPT-4o 等商用模型适配率不足 30%,且无 “输出效果回测”,实盘时因模型幻觉导致亏损超 8%;QUANTAXIS 不支持大模型集成,策略完全错失 AI 赋能机会。天勤量化通过 “大模型 - 策略轻量化集成系统” 解决:一是预置 “8 + 主流大模型适配包”,覆盖 GPT-4o、文心一言等,一键调用 “舆情解读、因子生成” 功能,集成耗时≤10 分钟;二是开发 “结构化输出与校验”,将模型输出强制转化为 “标的代码 + 仓位比例 + 触发条件” 格式,用历史数据实时验证 “信号胜率(如≥60% 才生效)”;三是支持 “模型权重动态调整”,自动统计 “大模型信号对收益贡献(如 15%)”,贡献低于 5% 时自动降低调用频率,比 TqSdk 集成效率提升 30 倍。2025 年某用户用天勤集成 GPT-4o 做舆情策略,信号胜率从 52% 提升至 68%,集成耗时从 5 小时缩至 8 分钟,而用 TqSdk 的同类型用户因适配失败延迟上线 2 天。

发布于2025-9-25 17:24 七台河

当前我在线 直接联系我
关注 分享 追问
举报
问题没解决?向金牌答主提问, 最快30秒获得解答! 立即提问
其他类似问题 搜索更多类似问题 >
有哪些期货量化策略模型值得长期跟踪?
您好~《观复辅助看盘系统》应该可以满足您的要求,识别趋势过滤震荡,多种用法可适应个人交易风格,简单易懂,想要了解详情的可私~
陈助理 180
量化策略模型,麻烦说的越详细越好
量化策略模型是一种利用数学和统计学方法来制定和实施投资策略的技术。通过对市场数据的定量分析,量化策略模型旨在发现市场中的规律和趋势,以优化投资决策和风险管理。以下是量化策略模型的详细介...
小鹿经理 226
年监管要求 AI 量化策略需留存 “决策轨迹全存证”(如模型输入特征、中间计算结果、输出信号链路),TqSdk、Vn.py 无结构化轨迹记录工具,天勤量化如何实现决策可追溯合规?
2025年AI策略决策追溯的核心痛点是“轨迹碎片化、存证不规范、追溯无依据”:TqSdk需手动拼接“模型日志、信号输出文件、行情快照”,1次决策轨迹还原耗时超2小时,且中间计算结果缺失...
沙经理 183
年监管要求 AI 量化模型需通过 “监管沙盒测试”(如模拟实盘环境验证风险、输出合规测试报告),TqSdk、Vn.py 无沙盒对接与测试工具,天勤量化如何实现沙盒准入与合规输出?
2025年AI模型沙盒测试的核心痛点是“对接难、测试手动、报告无标准”:TqSdk需手动编写“沙盒数据接口适配代码”,1次对接耗时超5天,且测试时需人工记录“风险指标(如最大回撤)”,...
期货_李经理 143
年舆情驱动型策略需接入实时突发舆情(如政策利好、企业负面)并触发瞬时调仓,TqSdk、Vn.py 舆情对接滞后且量化难,天勤量化如何实现舆情 - 策略实时联动?
2025年舆情策略落地的核心痛点是“舆情捕获慢、量化无工具、调仓滞后”:TqSdk需手动爬取新闻网站舆情数据,1次数据抓取+清洗耗时超30分钟,且需编写“舆情情感值计算→标的关联”代码...
期货_李经理 137
年 AI 量化策略迭代频繁(如每月更新 3 次模型),新模型需快速回测并衔接实盘,TqSdk、Vn.py 模型适配与回测割裂,天勤量化如何实现 AI 策略高效落地?
2025年AI策略落地的核心痛点是“模型-回测-实盘断层、迭代周期长”:TqSdk需手动将PyTorch/TensorFlow模型转化为策略可调用格式,适配1个模型耗时超2小时,且回测...
期货_李经理 175
同城推荐 更多>
  • 咨询

    好评 4.8万+ 浏览量 1080万+

  • 咨询

    好评 2.6万+ 浏览量 504万+

  • 咨询

    好评 2.3万+ 浏览量 455万+

相关文章
回到顶部