您好,以下是3天速成的期货量化交易指标推荐,附Python代码示例:
第一天:掌握移动平均线交叉策略
移动平均线交叉策略是期货量化交易中最经典的趋势跟踪策略之一。通过计算短期和长期移动平均线的交叉点,判断市场的趋势变化。
```python
import pandas as pd
import numpy as np
def moving_average_crossover_strategy(df, short_window=40, long_window=100):
df['short_mavg'] = df['close'].rolling(window=short_window, min_periods=1).mean()
df['long_mavg'] = df['close'].rolling(window=long_window, min_periods=1).mean()
df['signal'] = 0
df['signal'][short_window:] = np.where(df['short_mavg'][short_window:] > df['long_mavg'][short_window:], 1, 0)
df['positions'] = df['signal'].diff()
return df
```
第二天:学会计算相对强弱指数(RSI)
RSI指标用于衡量市场的超买或超卖状态,是判断市场反转的重要工具。
```python
def calculate_rsi(df, window=14):
delta = df['close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=window).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=window).mean()
rs = gain / loss
df['rsi'] = 100 - (100 / (1 + rs))
return df
```
第三天:掌握布林带策略
布林带策略是均值回归策略的经典应用,通过计算价格与布林带上下轨的关系,判断市场的波动性和潜在反转点。
```python
def bollinger_bands_strategy(df, window=20, num_std_dev=2):
df['SMA'] = df['close'].rolling(window=window).mean()
df['std_dev'] = df['close'].rolling(window=window).std()
df['upper_band'] = df['SMA'] + (df['std_dev'] * num_std_dev)
df['lower_band'] = df['SMA'] - (df['std_dev'] * num_std_dev)
df['signal'] = 0
df['signal'][df['close'] < df['lower_band']] = 1
df['signal'][df['close'] > df['upper_band']] = -1
df['positions'] = df['signal'].diff()
return df
```
以上三个指标和代码示例可以帮助你快速入门期货量化交易。通过结合这些指标,你可以构建简单的量化交易策略,并逐步优化和扩展。
期货交易,最难的就是看清方向并控制失误。这一年,我通过不断优化,实盘验证了一套完善的多空指标系统,帮助我精准识别信号,避开了过去容易犯的错误。现在,这套系统已经非常成熟,可以分享给更多和我一样在市场努力的朋友。如果你想更快找到交易方向,加我微信手把手教你安装使用,尽量让你早日掌握高效方法。
发布于2025-5-26 13:08 北京

