您好,在期货交易中,多空趋势预测指标种类繁多,这里提供一个基于移动平均和标准差的简单趋势预测指标源码(Python示例),结合了均线金叉死叉和价格偏离度判断:
`import pandas as pd; def trend_predict(df, short_window=5, long_window=10): df['SMA_Short'] = df['Close'].rolling(window=short_window, min_periods=1).mean() df['SMA_Long'] = df['Close'].rolling(window=long_window, min_periods=1).mean() df['Std_Dev'] = df['Close'].rolling(window=long_window, min_periods=1).std() df['Upper_Band'] = df['SMA_Long'] + (df['Std_Dev'] * 2) df['Lower_Band'] = df['SMA_Long'] - (df['Std_Dev'] * 2) df['Signal'] = 0 df['Signal'][df['SMA_Short'] > df['SMA_Long']] = 1 df['Signal'][df['SMA_Short'] < df['SMA_Long']] = -1 df['Signal'][df['Close'] > df['Upper_Band']] = -1 df['Signal'][df['Close'] < df['Lower_Band']] = 1 return df;` 该代码计算短期和长期均线,以及基于长期均线的上下轨,通过均线交叉和价格突破上下轨来判断多空信号。信号`1`代表多头,`-1`代表空头,`0`代表中性。这只是一个基础示例,实际应用中需要根据具体市场情况调整参数并进行回测优化。
期货交易,最难的就是看清方向并控制失误。这一年,我通过不断优化,实盘验证了一套完善的多空指标系统,帮助我精准识别信号,避开了过去容易犯的错误。现在,这套系统已经非常成熟,可以分享给更多和我一样在市场努力的朋友。如果你想更快找到交易方向,加我微信手把手教你安装使用,尽量让你早日掌握高效方法。
发布于2025-5-20 14:02 北京

